Science Knowledge Organiser — Sound

Key Knowledge

Learn these key facts—key points in red

Sound—what do we need to know?

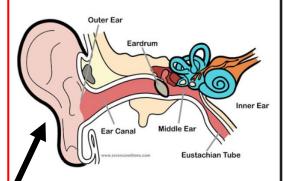
What is sound?

- Sound is a thing that can be heard.
- The object that makes the sound is called a source.

How is a sound made?

- When objects vibrate, a sound is made.
- The vibration makes the air around the object vibrate and the air vibrations enter your ear. These are called sound waves.
- If an object is making a sound, a part of it is vibrating, even if you cannot see the vibrations.

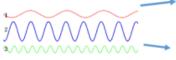
How do we hear sounds?


- Sound waves travel to the ear and make the ear drum vibrate.
- Messages are sent to the brain which recognises the vibrations as sound.

How do sounds travel?

 Sound waves travel through a medium (such as air, water, glass, stone, and brick).

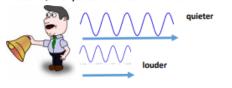
How do we measure sound?


- Amplitude measures how strong a sound wave is.
- ♦ **Decibels** measure how loud a sound is.
- Frequency measures the number of times per second that the sound wave cycles.

How do sounds change?

Pitch:

- High pitch sounds are created by short sound waves.
- Low pitched sounds are created by long sound waves.



long sound waves create a low pitch

short sound waves create a high pitch

Volume:

- The closer you are to the source of the sound, the louder the sound will be.
- The further away you are from the source of the sound, the quieter the sound will be.

VIBRATIONS

Sound is made when an object vibrates and therefore causes the air around it to vibrate too. These vibrations are carried to your ear for you to hear them.

Sound vibrations can travel through different materials:

SOLIDS: metals, stone, wood LIQUIDS: water GASES: air

Sound travels better through some materials than others. It travels very well through metal pipes for example.

The louder the volume, the bigger the vibrations. The size of the vibration is called the *amplitude*. Quieter volumes have smaller amplitudes and louder sounds have larger amplitudes.

Sounds travel in a <u>wave</u>. The vibrations make <u>air particles</u> closest to the object vibrate, which then passes the vibrations to the particle next to it and so on - like dominoes falling!

source

transmit

vibration

volume

Alexander Graham Bell was a Scottish scientist who invented the telephone in 1876.

Word	Definition
amplitude	a measure of strength of a sound wave.
decibel	a measure of how loud a sound is.
ear	the organ of hearing and balance. It has an outer part, a middle part and an inner part.
frequency	a measure of how many times per second a sound wave cycles.
insulation	material that stops the travel of energy (including sound).
medium	something that makes it possible to transfer energy from one location to another.
pitch	how high or low a sound is.
sound	a type of energy made by vibrations.
sound waves	invisible waves that travel through the air, water and solid objects as vibrations.

Key Vocabulary
Understand these key words

Focus Scientist — Beth O'Leary

another.

where something comes from.

to pass from one place or person to

invisible waves that move quickly.

how loud or quiet a sound is.

Beth O'Leary is a live sound technician and engineer who talks about sound engineering as a career and some of the issues that come from working in a maledominated profession (see https://soundgirls.org/contributors/beth-oleary/).